唐少君

发布日期:2023-09-21

一、个人基本情况

姓名:唐少君

性别:男

学位:博士

职称:特任副研究员

所在系:数学系

电子邮件:shaojun.tang@whut.edu.cn

二、教育背景与工作经历

教育背景:

2008/09 ~ 2012/06 本科,三峡大学

2012/09 ~ 2015/06 硕士,武汉大学

2015/09 ~ 2018/06 博士,武汉大学

工作经历:

2018/07 ~ 2021/06 博士后,中国科学技术大学数学科学学院

2021/06 ~ 至今 特任副研究员,武汉理工大学理学院数学系

三、研究方向

流体动力学中的非线性偏微分方程,液晶的数学理论,动理学方程的流体动力学极限及边界层分析。

四、教学研究

近年来主要承担的课程有《分析学基础》、《线性代数》、《数值计算》、《高等数学A》、《概率论与数理统计B》等。

五、科学研究

主要从事非线性偏微分方程的研究,近年来公开发表SCI论文10余篇,主持国家自然科学基金青年基金项目1项。已参与国家自然科学基金3项

六、已发表的学术论文

[1] Guo, Liang; Jiang, Ning; Li, Fucai; Luo, Yi-Long; Tang, Shaojun, Incompressible Limit of the Ericksen–Leslie Parabolic–Hyperbolic Liquid Crystal Model. J. Nonlinear Sci.34 (2024), no. 1, Paper No. 2

[2] Jiang, Ning; Luo, Yi-Long; Ma, Yangjun; Tang, Shaojun. Entropy inequality and energy dissipation of inertial Qian-Sheng model for nematic liquid crystals. J. Hyperbolic Differ. Equ. 18 (2021), no. 1, 221–256.

[3] Jiang, Ning; Luo, Yi-Long; Tang, Shaojun. Convergence from two-fluid incompressible Navier-Stokes-Maxwell system with Ohm's law to solenoidal Ohm's law: classical solutions. J. Differential Equations 269 (2020), no. 1, 349–376.

[4] Jiang, Ning; Luo, Yi-Long; Tang, Shaojun; Zarnescu, Arghir. A scaling limit from the wave map to the heat flow into S2. Commun. Math. Sci. 17 (2019), no. 2, 353–375.

[5] Jiang, Ning; Luo, Yi-Long; Tang, Shaojun. On well-posedness of Ericksen-Leslie's parabolic-hyperbolic liquid crystal model in compressible flow. Math. Models Methods Appl. Sci. 29 (2019), no. 1, 121–183.

[6]Fan, Lili; Gong, Guiqiong; Tang, Shaojun Asymptotic stability of viscous contact wave and rarefaction waves for the system of heat-conductive ideal gas without viscosity. Anal. Appl. (Singap.)17 (2019), no. 2, 211–234.

[7]Jiang, Ning; Luo, Yi-Long; Tang, Shaojun Zero inertia density limit for the hyperbolic system of Ericksen-Leslie's liquid crystal flow with a given velocity. Nonlinear Anal. Real World Appl.45 (2019), 590–608.

[8]Huang, Bingkang; Tang, Shaojun; Zhang, Lan Nonlinear stability of viscous shock profiles for compressible Navier-Stokes equations with temperature-dependent transport coefficients and large initial perturbation. Z. Angew. Math. Phys.69 (2018), no. 6, Paper No. 136, 35 pp.

[9]Tang, Shaojun; Zhang, Lan Nonlinear stability of viscous shock waves for one-dimensional nonisentropic compressible Navier-Stokes equations with a class of large initial perturbation. Acta Math. Sci. Ser. B (Engl. Ed.)38 (2018), no. 3, 973–1000.

[10]He, Lin; Tang, Shaojun; Wang, Tao Stability of viscous shock waves for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. Acta Math. Sci. Ser. B (Engl. Ed.)36 (2016), no. 1, 34–48.