高飞

发布日期:2023-09-21

一、个人基本情况

姓名高飞

性别:男

职称/职务教授居里夫人学者Marie-Curie Fellow

学位/学历:博士/研究生

博生导师硕导

所在系: 数学与统计学院数学系

研究方向分数阶系统、大数据分析、神经网络、机器学习、群智能算法等

电子邮箱gaof@whut.edu.cn

个人主页:https://orcid.org/0000-0003-2266-7263 

二、教育背景与工作经历

高飞 博士,武汉理工大学理学院数学系应用数学专业教授(2013.9-),居里夫人Marie-Curie Fellow,硕士生导师,归国留学博士后、博士后出站。从事涉及神经网络、机器学习、分数阶系统、群智能算法等领域的科学研究工作,并将它们应用于各种实际问题。

(1)教育背景:

2003.09-2006.06,武汉理工大学大学,流体力学,博士

1999.09-2002.06,武汉大学大学,应用数学,硕士

1999.6在武汉大学数学与计算机学院获理学学士学位

(2)工作经历:

2024.06-至今,武汉理工大学,数学与统计学院,教授

2013/09-2024.05,武汉理工大学,理学院数学系,教授

2011/112012/10,挪威科技大学(NTNU),信息科技与数学及电子工程学院, Marie Curie Fellow博士后欧盟Marie Curie COFUND项目资助

2008/032009/03,韩国科学技术研究院(KAIST),电子系,博士后韩国Brain Korea 21 Century项目资助

2007/12-2013/09,武汉理工大学,理学院数学系,副教授

2006/112009/07,武汉理工大学,建筑学院,博士后

2004/11-2007/11,武汉理工大学,理学院数学系,讲师

三、教学研究

国家精品课程经济数学——高等数学B>主讲教师,自2002年以来进行高等数学AB(含双语、纯英文教学)、微积分、概率统计、线性代数、复变函数与积分变换、最优化理论与方法、常微分方程、数值计算等课程的教学与研究。

四、科学研究

(1)科研项目:

1.湖北省自然科学基金项目,2014CFB865、分数阶超混沌的非Lyapunov重构研究、2015/01-2016/123万、结题、主持

2.国家自然科学基金重大研究计划项目,91324201、非常规突发事件下社会群体心理与行为变化规律和机制、2014/01-2016/12175万、结题、参与

3.“Marie COFUND of the European Commission - ABCDE 项目,欧盟n°246016Mathematical analysis on bio-inspired communication network theory2011/11-2012/101万欧元、结题、主持

4.教育部中国留学科研启动基金项目,20111j0032、基于量子细菌趋化算法的非Lyapunov分析方法研究、2010/06-2011/123万、已结题、主持……

(2)学术论文:

(2.1) 2024年迄今

[1]    Xu Y, Gao F. A novel higher-order Deffuant–Weisbuch networks model incorporating the Susceptible Infected Recovered framework[J]. Chaos, Solitons & Fractals, 2024, 182: 114778.

[2]    Xie X, Gao F. The Delayed Effect of Multiplicative Noise on the Blow-Up for a Class of Fractional Stochastic Differential Equations[J]. Fractal and Fractional, 2024, 8(3): 127.

(2.2) 2024年之前

[1]  ZHANG M, GAO F, YANG W, ZHANG H. Wildlife Object Detection Method Applying Segmentation Gradient Flow and Feature Dimensionality Reduction [J]. Electronics, 2023, 12(2).

[2]  ZHANG M, GAO F, YANG W, ZHANG H. Real-Time Target Detection System for Animals Based on Self-Attention Improvement and Feature Extraction Optimization [J]. Applied Sciences-Basel, 2023, 13(6).

[3]  GAO F, ZHAN H. Boundedness and exponential stabilization for time–space fractional parabolic–elliptic Keller–Segel model in higher dimensions [J]. Applied Mathematics Letters, 2023, 144: 108699.

[4]  GUO L, GAO F, ZHAN H. Existence, uniqueness and L8-bound for weak solutions of a time fractional Keller-Segel system [J]. Chaos Solitons & Fractals, 2022, 160.

[5]  ZHOU X, GAO F, FANG X, LAN Z. Improved Bat Algorithm for UAV Path Planning in Three-Dimensional Space [J]. Ieee Access, 2021, 9: 20100-16.

[6]  GAO F, LI X, LI W, ZHOU X. Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative [J]. Chaos Solitons & Fractals, 2021, 142.

[7]  GAO F, LI W-Q, TONG H-Q, LI X-L. Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system [J]. Chinese Physics B, 2019, 28(9).

[8]  ZHANG J, GAO F, CHEN Y, et al. Parameter Identification of Fractional-order Chaotic System Based on Chemical Reaction Optimization; proceedings of the 2nd International Conference on Management Engineering, Software Engineering and Service Sciences (ICMSS), Wuhan, PEOPLES R CHINA, F 2018, Jan 13-15, 2018 [C]. 2018.

[9]  GAO F, HU D-N, TONG H-Q, WANG C-M. Chaotic analysis of fractional Willis delayed aneurysm system [J]. Acta Physica Sinica, 2018, 67(15).

[10] MAO W, GAO F, DONG Y, LI W. A Novel Paradigm for Calculating Ramsey Number via Artificial Bee Colony Algorithm; proceedings of the 35th Chinese Control Conference (CCC), Chengdu, PEOPLES R CHINA, F 2016, Jul 27-29, 2016 [C]. 2016.

[11] GAO F, LI T, TONG H-Q, OU Z-L. Chaotic dynamics of the fractional Willis aneurysm system and its control [J]. Acta Physica Sinica, 2016, 65(23).

[12] GAO F, LEE T, CAO W-J, et al. Self-evolution of hyper fractional order chaos driven by a novel approach through genetic programming [J]. Expert Systems with Applications, 2016, 52: 1-15.

[13] GAO F, LEE X-J, FEI F-X, et al. Identification time-delayed fractional order chaos with functional extrema model via differential evolution [J]. Expert Systems with Applications, 2014, 41(4): 1601-8.

[14] GAO F, FEI F-X, LEE X-J, et al. Inversion mechanism with functional extrema model for identification incommensurate and hyper fractional chaos via differential evolution [J]. Expert Systems with Applications, 2014, 41(4): 1915-27.

[15] GAO F, LEE X-J, TONG H-Q, et al. Identification of Unknown Parameters and Orders via Cuckoo Search Oriented Statistically by Differential Evolution for Noncommensurate Fractional-Order Chaotic Systems [J]. Abstract and Applied Analysis, 2013.

[16] GAO F, LEE X-J, FEI F-X, et al. Parameter identification for Van Der Pol-Duffing oscillator by a novel artificial bee colony algorithm with differential evolution operators [J]. Applied Mathematics and Computation, 2013, 222: 132-44.

[17] GAO F, FEI F-X, TONG H-Q, et al. Bacterial Foraging Optimization Oriented by Atomized Feature Cloud Model Strategy; proceedings of the 32nd Chinese Control Conference (CCC), Xian, PEOPLES R CHINA, F 2013, Jul 26-28, 2013 [C]. 2013.

[18] GAO F, QI Y, BALASINGHAM I, et al. A Novel non-Lyapunov way for detecting uncertain parameters of chaos system with random noises [J]. Expert Systems with Applications, 2012, 39(2): 1779-83.

[19] GAO F, FEI F-X, XU Q, et al. A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems [J]. Applied Mathematics and Computation, 2012, 219(2): 552-68.

[20] GAO F, FEI F-X, DENG Y-F, et al. A novel non-Lyapunov approach through artificial bee colony algorithm for detecting unstable periodic orbits with high orders [J]. Expert Systems with Applications, 2012, 39(16): 12389-97.

[21] XIAO J-Q, WU M, GAO F. Divergence points of self-similar measures satisfying the OSC [J]. Journal of Mathematical Analysis and Applications, 2011, 379(2): 834-41.

[22] GAO F, QI Y, YIN Q, XIAO J. Solving problems in chaos control though an differential evolution algorithm with region zooming; proceedings of the 2nd International Conference on Mechanical and Aerospace Engineering (ICMAE 2011), Bangkok, THAILAND, F 2012, Jul 29-31, 2011 [C]. 2012.

[23] GAO F, LEE J-J, LI Z, et al. Parameter estimation for chaotic system with initial random noises by particle swarm optimization [J]. Chaos Solitons & Fractals, 2009, 42(2): 1286-91.

[24] GAO F, GAO H, LI Z, et al. Detecting unstable periodic orbits of nonlinear mappings by a novel quantum-behaved particle swarm optimization non-Lyapunov way [J]. Chaos Solitons & Fractals, 2009, 42(4): 2450-63.

[25] GAO F, LI Z-Q, TONG H-Q. Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization [J]. Chinese Physics B, 2008, 17(4): 1196-201.

[26] GAO F, LEE J-J, IEEE. A New Approach in Synchronization of Uncertain Chaos Systems Through Particle Swarm Optimization; proceedings of the 6th IEEE International Conference on Industrial Informatics, Daejeon, SOUTH KOREA, F 2008, Jul 13-16, 2008 [C]. 2008.

[27] GAO F, LEE J-J, IEEE. A New Approach in Discrete Chaos System Control by Differential Evolution Algorithm; proceedings of the 6th IEEE International Conference on Industrial Informatics, Daejeon, SOUTH KOREA, F 2008, Jul 13-16, 2008 [C]. 2008.

[28] GAO F, TONG H Q. Parameter estimation for chaotic system based on particle swarm optimization [J]. Acta Physica Sinica, 2006, 55(2): 577-82.

[29] GAO F, TONG H Q. A novel optimal PID tuning and on-line tuning based on particle swarm optimization; proceedings of the International Conference on Sensing, Computing and Automation, Chongqing, PEOPLES R CHINA, F Dec 2006, May 08-11, 2006 [C]. 2006.

[30] GAO F, TONG H, IEEE. Control a novel discrete chaotic system through Particle Swarm Optimization; proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, PEOPLES R CHINA, F 2006, Jun 21-23, 2006 [C]. 2006.

[31] GAO F, TONG H. UEAS: A novel united evolutionary algorithm scheme [M]//KING I, WANG J, CHAN L, WANG D L. Neural Information Processing, Pt 3, Proceedings. 2006: 772-80.

[32] GAO F, TONG H. Differential evolution: An efficient method in optimal PID tuning and on-line tuning [J]. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms, 2006, 13: 785-9.

[33] GAO F, TONG H. Particle swarm optimization: An efficient method for tracing periodic orbits and controlling chaos [J]. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms, 2006, 13: 780-4.

(3)学术兼职:

中国自动化学会分数阶专委会副秘书长